The Synthesis and Chemistry of Azolenines.t Part 2.1 A General Synthesis of Pyrrole-2-carboxylic Acid Derivatives by the Reaction of $\mathbf{2 H}$-Azirines with Enamines, and the Crystal and Molecular Structure of Ethyl 3-Phenyl-4,5,6,7-tetrahydroindole-2-carboxylate

Kam Wah Law, Ting-Fong Lai, and Michael P. Sammes *
Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong
AIan R. Katritzky *
Department of Chemistry, University of Florida, Gainesville, Florida 32611, U.S.A.
Thomas C. W. Mak
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Abstract

A new general synthesis of 1 H -pyrrole-2-carboxylic acid derivatives is described. Reaction between appropriately substituted 2 H -azirines and enamines gives a mixture of 2,3 - and 3,4 -dihydropyrroles, which on acid treatment yields the title compounds in moderate to high yields. Attempts to extend the reaction to the preparation of 2 H - and 3 H -pyrroles were unsuccessful ; reasons are discussed. The crystal and molecular structure of ethyl 3-phenyl-4,5,6,7-tetrahydroindole-2-carboxylate has been determined. The molecules pack in highly coplanar, centrosymmetric, hydrogen-bonded pairs.

As part of a search for new synthetic approaches to 2 H - and 3 H -pyrroles, ${ }^{2}$ we were interested in a potential reaction between 2 H -azirines and enamines. 2 H -Pyrroles have been prepared from 2 H -azirines by photochemical cleavage of the $\mathrm{C}-\mathrm{C}$ bond, ${ }^{3-5}$ thermal cleavage of the $\mathrm{C}^{-} \mathrm{N}$ bond, ${ }^{6-9}$ or $\mathrm{Mo}(\mathrm{CO})_{6}$-catalysed cleavage of the $\mathrm{C}=\mathrm{N}$ bond, ${ }^{10}$ each in the presence of alkynes, or of substituted alkenes serving as masked alkynes. Recently, attack by enolate anions at the 2 H -azirine $\mathrm{C}=\mathrm{N}$ bond has led to 2 H -pyrroles ${ }^{11.12}$ by what is claimed to be the most convenient general route to these compounds. ${ }^{11 c}$ It seemed that both 2 H - and the little-known 3 H -pyrroles might be prepared by reaction between 2 H azirines and suitably substituted enamines, the latter being structural analogues of enolate anions. Two alternative pathways were envisaged (Scheme 1), each involving loss of pyrrolidine from a $1: 1$ adduct.

Results and Discussion

In preliminary exploratory reactions we selected substrates having R^{3} and $\mathrm{R}^{6}=\mathrm{H}$, the anticipated products being $1 H$ pyrroles (7) or (8) (Scheme 2). This was to establish both the appropriate conditions and the orientation of any addition, prior to extension of the reaction to 2 H - and 3 H -pyrroles.

Reactions in which R^{3} and $\mathrm{R}^{6}=\mathrm{H}$.-Pyrrolidin-1-ylcyclohexene (1b) reacted exothermally with the azirine ester (2 n) at room temperature and the mixture after being heated at $100^{\circ} \mathrm{C}$ for 15 min yielded a 1 H -pyrrole (21%; m.p. $200.5^{\circ} \mathrm{C}$) whose i.r. and ${ }^{1} \mathrm{H}$ n.m.r. spectra were consistent with structures (7bn) or (8bn) \ddagger Attempts to distinguish these by ${ }^{13} \mathrm{C}$ n.m.r. spectroscopy were inconclusive; the structure was established as (8 bn) by X-ray crystallography (see below), thus demonstrating that reaction between substrates (1b) and (2n) was via path B and not path A .

This being a new synthetic route to $1 H$-pyrroles (8), efforts were turned to establishing the scope and mechanism of the reaction, and to optimising yields.§ Equimolar amounts of reactants (1 b) and (2 n) when stirred at room temperature until

[^0]the azirine i.r. band near $1770 \mathrm{~cm}^{-1}$ had disappeared gave a 1:1 adduct ($M^{+\cdot} 340$); neutralisation of a dry methanolic solution with hydrogen chloride gas at $0^{\circ} \mathrm{C}$ led to the pyrrole (8bn) in 84% yield.

Extension to a wide range of enamines ($1 \mathrm{a}-\mathrm{h}$) and azirine esters ($2 \mathrm{n}-\mathrm{q}$), using a $2-4 \mathrm{~h}$ reaction time prior to HCl treatment (Method A), gave additional $1 H$-pyrroles (8) most of which are novel (Table 1). In some cases carbon tetrachloride gave better results than methanol (Method B); yields were good to excellent. For the less reactive enamines (1i) and (1j) yields were lower even after prolonged (72 h) reaction times before HCl treatment; no 1 H -pyrroles could be isolated from (1k), which gave instead a small amount (7.5%) of the pyrazine (10). ब

In view of the known sensitivity of 1 H -pyrroles to strong acids, decomposition of the enamine-azirine ($1: 1$) adduct was attempted with acetic acid in methanol, and with ammonium chloride or ammonium acetate in liquid ammonia. Of these modifications, the first (Method C), and the last (Method D) gave improved yields in certain cases when $\mathrm{R}^{4}=\mathrm{Me}$, but not when $\mathbf{R}^{4}=\mathrm{Ph}$. Reactions using the highly reactive diester (2r) were carried out in a solvent (chloroform) at $0{ }^{\circ} \mathrm{C}$ (Method E). Although L'abbé and co-workers isolated 1 H -pyrroles from this azirine and enamines without acid treatment, ${ }^{13}$ we found that the yield of (8fr) was increased from 8 to 25% if the reaction mixture was treated in methanol with HCl .

The Nature of the Intermediate 1:1 Adduct.-L'abbė and co-workers proposed that the initial adduct of type (4) ringopened to a 2,5 -dihydropyrrole of type (11) (Scheme 3) prior to loss of the secondary amine. ${ }^{13}$ We believe that the bicycles (4) are instead converted into a mixture of a 2,3 -dihydropyrrole (12) and a 3,4-dihydropyrrole (13), possibly in equilibrium, and with the former being the major ($>75 \%$) component. Liquid film i.r. spectra for a series of intermediates having $\mathrm{R}^{4}=\mathrm{Ph}$ and $\mathrm{R}^{5}=\mathrm{CO}_{2} \mathrm{Me}$ show common peaks at 1746 w [$\mathrm{v}_{\mathrm{C}=\mathrm{o}}$ of (13)], 1685 vs [$\mathrm{v}_{\mathrm{C}=\mathrm{o}}$ of (12) but not (11)], 1545 s (somewhat broad), $1385 \mathrm{~s}, 1270 \mathrm{~s}$, and 1120 s cm^{-1}. There is only weak absorption in the NH region. Likewise, ${ }^{1} \mathrm{H}$ n.m.r. spectra show typical pyrrolidine multiplets

[^1]

(1)
(2)

(4)

(5)

Scheme 1.

(7)
(8)

	R^{1}	R^{2}	R^{3}		R^{4}	R^{5}	R^{6}
(1a)		$\left[\mathrm{CH}_{2}\right]_{3}$	H	(2n)	Ph	$\mathrm{CO}_{2} \mathrm{Et}$	H
(1b)		$\left[\mathrm{CH}_{2}\right]_{4}$	H	(20)	Ph	$\mathrm{CO}_{2} \mathrm{Me}$	H
(1c)		$\left[\mathrm{CH}_{2}\right]_{5}$	H	(2p)	Me	$\mathrm{CO}_{2} \mathrm{Et}$	H
(1d)		$\left[\mathrm{CH}_{2}\right]_{6}$	H	(2q)	Me	$\mathrm{CO}_{2} \mathrm{Me}$	H
(1e)	Et	Me	H	(2r)	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	H
(If)	Et	Ph	H	(2s)	Ph	CONMe_{2}	H
(1g)	Ph	H	H	(2t)	Ph	CONH_{2}	H
(1h)	Ph	Me	H	(2u)	Ph	CHO	H
(1i)	Me	Ac	H	(2v)	Ph	$\mathrm{CH}(\mathrm{OEt})_{2}$	H
(1j)	Me	$\mathrm{CO}_{2} \mathrm{Et}$	H	(2w)	Ph	H	H
(1k)	Ph	$\mathrm{CO}_{2} \mathrm{Et}$	H	(2x)	Ph	Me	H
(11)	H	Me	Me	(2y)	Ph	$\mathrm{CO}_{2} \mathrm{Me}$	Me
(1m)	Ph	Me	Me	(2z)	Ph	Me	Me

Scheme 2.

(7bn)

(9)

(8bn)

(10)

(11)
(4)

(12)

(13)

Scheme 3.
opening sequence, we believe it to be concerted as shown; the isopropyl carbon atom is an unfavourable site for a carbanion. Adducts from the azirine (2 w) appear to be mixtures of isomeric compounds.

Reaction between 2 H -Azirines and Ynamines.-Such reactions should give $1 H$-pyrroles directly, as was found to be the case. The ynamine (15) (Scheme 5) reacted with azirines (2n) and (20) (Method G) to give low yields of the aminopyrroles (16) and (17) (Table 1).

Crystal Structure of the Tetrahydroindole (8bn).-The crystal structure of this compound is of interest from a number of points of view. Besides establishing the orientation of addition between azirines and enamines, it is the first reported structure of a tetrahydroindole. Further, few crystal structures of pyrrole-2-carboxylic esters have been determined, ${ }^{15}$ and this one is found to contain centrosymmetrically-related hydrogenbonded pairs of molecules (Figure).

Bond lengths and angles (Table 3) compare well with the corresponding values for related ethyl pyrrole-2-carboxylates; ${ }^{15 b}$ they also agree very closely with those for a series of 2-benzoylpyrroles. ${ }^{16}$ The carbonyl group, which is essentially coplanar with the pyrrole ring [Table 4; the relevant torsion angle is $\left.170(8)^{\circ}\right]$, is syn relative to the $\mathrm{C}(2)^{-}$ N bond; examples are known where it is both anti ${ }^{15}$ and syn. ${ }^{15 b}$ The phenyl-group, which is rotated out of the plane of the pyrrole ring by $51(4)^{\circ}$, has normal bond lengths and angles. Puckering of the cyclohexene moiety to relieve strain results in $C(6)$ and $C(7)$ lying respectively below and above a plane defined by the pyrrole ring atoms (Table 4). The unusually short ($1.464 \AA$) $\mathrm{C}(6)^{-} \mathrm{C}(7)$ bond, and enlarged (115-116 ${ }^{\circ}$) $C(5)-C(6)-C(7)$ and $C(6)-C(7)-C(8)$ angles, possibly arise

Scheme 4.

(16) $R=E t$
(17) $R=M e$

Scheme 5.
from large thermal motions for $\mathrm{C}(6)$ and $\mathrm{C}(7)\left(U_{22}=0.122\right.$ and 0.132 respectively; Table 8). The most closely related structure we have been able to find (3,4,5,6-tetrahydrophthalimide ${ }^{17}$) does not show this effect.

All the atoms making up the ten-membered ring hydrogenbonding site are remarkably coplanar (Table 4), deviations from the plane defined by $O(1), O(1)^{\prime}, N$, and N^{\prime} all being less than $0.1 \AA$. Relevant $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ bond lengths and angles are given in Table 5. There has been only one other report of simple dimeric H -bonded structures in the pyrrole series, ${ }^{16}$ although a bifurcated system is known. ${ }^{15 b}$

Experimental

I.r. spectra were recorded on a Perkin-Elmer 577 spectrophotometer and calibrated with polystyrene; n.m.r. spectra were recorded on Perkin-Elmer R-20 $\left({ }^{1} \mathrm{H}\right)$ and JEOL FX-90Q (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) instruments with internal SiMe_{4} being used in calibration; and mass spectra on a Hitachi RMS-4 spectrometer. Enamines were prepared by well-known methods; the ynamine (15) as reported by Hubert and Viehe. ${ }^{18}$ Known azirines were prepared by published procedures: (2 n), ${ }^{19}$ (20), ${ }^{19}(2 \mathrm{p}),{ }^{20}(2 \mathrm{r}),{ }^{21}(2 \mathrm{t}),{ }^{22}(2 \mathrm{u}),{ }^{23}(2 \mathrm{v}),{ }^{23}(2 \mathrm{w}),{ }^{24}(2 \mathrm{x}),{ }^{11}$ and (2 z); ${ }^{11 b}$ they were characterised by i.r. and ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy. Established methods were used for new azirines: (2q), ${ }^{20}$ 34% (from methyl crotonate), $v_{\text {max. }}$ (film) 1798 and 1729 cm^{-1}; $\delta\left(\mathrm{CDCl}_{3}\right) 3.72(3 \mathrm{H}, \mathrm{s}), 2.52(3 \mathrm{H}, \mathrm{s})$, and $2.43(1 \mathrm{H}, \mathrm{s})$; (2s), ${ }^{22} 92 \%$, $v_{\text {max. }}$ (film) 1760 and $1643 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 7.75$ ($2 \mathrm{H}, \mathrm{m}$), $7.45(3 \mathrm{H}, \mathrm{m}), 3.29(3 \mathrm{H}, \mathrm{s})$, and $2.96(3 \mathrm{H},+1 \mathrm{H})$; and (2 y), ${ }^{19} 81 \%$, $v_{\text {max. }}$ (film) 1758 and $1726 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right)$ $7.75(2 \mathrm{H}, \mathrm{m}), 7.51(3 \mathrm{H}, \mathrm{m}), 3.62(3 \mathrm{H}, \mathrm{s})$, and $1.60(3 \mathrm{H}, \mathrm{s})$.

Preparation of $1 \mathrm{H}-$ Pyrroles (8).-Method A. To the azirine (2) (0.01 mol) was added dropwise, with stirring and cooling, the enamine (1) (0.01 mol). The mixture was stirred at $25^{\circ} \mathrm{C}$ until i.r. absorption at $1770 \mathrm{~cm}^{-1}$ had disappeared (2-72 h);

Table 1. Preparative, physical, and analytical data for pyrrole-2-carboxylic acid derivatives (8), (16), and (17)

Compd.	R^{1}	R^{2}	R ${ }^{4}$	R^{5}	Yield$(\%)$	Method ${ }^{\text {a/ }}$ solvent ${ }^{b}$	$\begin{aligned} & \text { M.p. } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Found (\%) (Requires)			Molecular formula
								C	H	N	
(8an)	$\left[\mathrm{CH}_{2}\right]_{3}$		Ph	$\mathrm{CO}_{2} \mathrm{Et}$	65	A/I	162	75.0	6.8	5.4	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$
								(75.25	6.7	5.5)	
(8bn)	$\left[\mathrm{CH}_{2}\right]_{4}$		Ph	$\mathrm{CO}_{2} \mathrm{Et}$	84	A/I	200.5	75.5	6.8	5.2	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$
(8cn)	$\left[\mathrm{CH}_{2}\right]_{5}$		Ph	$\mathrm{CO}_{2} \mathrm{Et}$	80	A/I	190	76.3	7.3	5.0	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$
								(76.3	7.5	4.95)	
(8dn)	[$\left.\mathrm{CH}_{2}\right]_{6}$		Ph	$\mathrm{CO}_{2} \mathrm{Et}$	64	A/II	147.5	76.8	8.0	4.8	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}$
								(76.75	7.8	4.7)	
(8en)	Et	Me	Ph	$\mathrm{CO}_{2} \mathrm{Et}$	66	A/I	103	74.7	7.4	5.3	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$
	$\left[\mathrm{CH}_{2}\right]_{3}$							(74.7	7.45	$5.45)$	
(8ao)			Ph	$\mathrm{CO}_{2} \mathrm{Me}$	73	A/I	184	74.6	6.2	5.6	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
								(74.65	6.25	5.8)	
(8bo)	$\left[\mathrm{CH}_{2}\right]_{4}$		Ph	$\mathrm{CO}_{2} \mathrm{Me}$	62	B/III	190	75.4	6.9	5.6	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$
								(75.25	6.7	5.5)	
(8co)	$\left[\mathrm{CH}_{2}\right]_{5}$		Ph	$\mathrm{CO}_{2} \mathrm{Me}$	58	A/I	185	75.5	7.1	5.4	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$
								(75.8	7.1	5.2)	
(8do)	$\left[\mathrm{CH}_{2}\right]_{6}$		Ph	$\mathrm{CO}_{2} \mathrm{Me}$	72	A/III	157	76.2	7.7	4.95	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$
	Et							(76.3	7.5	4.95)	
(8eo)		Me	Ph	$\mathrm{CO}_{2} \mathrm{Me}$	81	B/II	125	74.2	7.1	5.7	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$
								(74.05	7.05	5.75)	
(8fo)	Et	Ph	Ph	$\mathrm{CO}_{2} \mathrm{Me}$	63	A/I	198.5	78.4	6.2	4.4	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}$
		H						(78.65	6.3	4.6)	
(8go)	Ph		Ph	$\mathrm{CO}_{2} \mathrm{Me}$	38	A/IV	182	78.3	5.55	4.05	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}$
	Ph	Me						(78.0	5.45	5.05)	
(8ho)			Ph	$\mathrm{CO}_{2} \mathrm{Me}$	48	A/I	138	78.3	6.0	4.5	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}$
		COMe						(78.3	5.9	4.8)	
(8io)	Me		Ph	$\mathrm{CO}_{2} \mathrm{Me}$	31	A/I	150.5	69.85	5.8	5.6	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}$
								(70.0	5.9	5.45)	
(8jo)	Me	$\mathrm{CO}_{2} \mathrm{Et}$	Ph	$\mathrm{CO}_{2} \mathrm{Me}$	24	A/I	140	67.1	6.1	4.9	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$
								(66.9	5.95	4.9)	
(8bp)			Me	$\mathrm{CO}_{2} \mathrm{Et}$	44	D/II	$110{ }^{\text {c }}$				
(8cp)	$\left[\mathrm{CH}_{2}\right]_{5}$		Me	$\mathrm{CO}_{2} \mathrm{Et}$	51	A/II	106	70.7	8.7	6.6	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}$
(8ep)								(70.55	8.65	6.3)	
	Et	Me	Me	$\mathrm{CO}_{2} \mathrm{Et}$	65	C/II	72	68.0	9.1	7.2	$\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}$
								(67.7	8.8	7.2)	
(8fp)	Et	Ph	Me	$\mathrm{CO}_{2} \mathrm{Et}$	27	C/I	147	74.7	7.8	5.7	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$
								(74.7	7.45	5.45)	
(8bq)	$\left[\mathrm{CH}_{2}\right]_{4}$		Me	$\mathrm{CO}_{2} \mathrm{Me}$	45	D/I	156	68.5	7.8	7.3	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$
								(68.35	7.8	7.25)	
(8gq)	Ph	H	Me	$\mathrm{CO}_{2} \mathrm{Me}$	25	C/I	127	72.4	6.3	6.6	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}$
								(72.5	6.1	6.5)	
(8ar)			$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	15	E/V	$127{ }^{\text {d }}$				
(8br)		$\left[\mathrm{CH}_{2}\right]_{4}$	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	21	E/I	$137.5{ }^{\text {a.e }}$				
(8cr)	$\left[\mathrm{CH}_{2}\right]_{s}$		$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	19	E/I	116	61.8	6.5	5.4	$\mathrm{C}_{13} \mathrm{H}_{47} \mathrm{NO}_{4}$
								(62.1	6.8	5.6)	
(8fr)	Et	Ph	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	25	E/V	$177.5^{\text {d }}$				
(8gr)	Ph	H	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	7	D/II	$132{ }^{\text {s }}$				
(8bs)	$\left[\mathrm{CH}_{2}\right]_{4}$		Ph	CONMe ${ }_{2}$	27	F/VI	252	76.2	7.55	10.45	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
	$\left[\mathrm{CH}_{2}\right]_{5}$							(76.1	7.5	10.4)	
(8cs)			Ph	CONMe_{2}	40	F/I	265	76.45	8.15	10.0	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$
	Et	Ph						(76.55	7.85	$9.9)$	
(8fs)			Ph	CONMe ${ }_{2}$	47	F/V	197	$\begin{array}{r} 79.0 \\ \mathbf{(7 9 . 2} \end{array}$	$\begin{aligned} & 6.9 \\ & 6.95 \end{aligned}$	$\begin{aligned} & 8.7 \\ & 8.8) \end{aligned}$	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$
(16)	NEt_{2}	Me	Ph	$\mathrm{CO}_{2} \mathrm{Et}$	15	G/V	117	72.3	8.1	9.3	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$
								(72.0	8.05	$9.3)$	
(17)	NEt_{2}	2 Me	Ph	$\mathrm{CO}_{2} \mathrm{Me}$	18	G/V	112.5	71.5	7.8	9.3	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$
								(71.3	7.75	9.8)	

${ }^{a}$ See Experimental section. ${ }^{b}$ Solvents for recrystallisation: I, CCl_{4}; II, light petroleum (b.p. $60-80^{\circ} \mathrm{C}$); III, MeOH; IV, CHCl_{3}; $\mathrm{V}^{2} \mathrm{CCl}_{4}-$ light petroleum; VI, EtOAc. ${ }^{c}$ Lit. m.p. $110-111{ }^{\circ} \mathrm{C}$ (V. I. Shvedov, L. B. Altukhova, and A. N. Grinev, Khim. Geterotsikl. Soedin.,
 Soc. Chim. Fr., 1974, 1147). ${ }^{e}$ Lit. m.p. $139^{\circ} \mathrm{C}$ (V. Bardakos, W. Sucrow, and A. Fehlauer, Chem. Ber., 1975, 108, 2161). ${ }^{f}$ Lit. m.p. $134-135{ }^{\circ} \mathrm{C}$ (J. Barluenga, F. Palacios, and V. Gotor, Synthesis, 1975, 642); $140^{\circ} \mathrm{C}$ (T. Sheradsky, Tetrahedron Lett., 1970, 25); $149{ }^{\circ} \mathrm{C}$ (ref. 13).

Table 2. I.r. (Nujol), and ${ }^{1} \mathrm{H}$ n.m.r. $\left(\mathrm{CDCl}_{3}\right)$ spectroscopic data for $1 H$-pyrroles (8), (16), and (17)

${ }^{a}$ Assignments may be interchanged. ${ }^{b}$ Signals superimposed. ${ }^{c}$ Signal not observed.
the $1: 1$ adduct was then dissolved in dry $\mathrm{MeOH}(15 \mathrm{ml})$ and dry HCl was passed into the solution at $0^{\circ} \mathrm{C}$ until it was neutral. The solvent was removed under reduced pressure and the pyrrole was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$; CHCl_{3}) and finally recrystallised.

Method B. As for Method A, only CCl_{4} was used in place of MeOH .

Method C. The 1:1 adduct (0.01 mol) was dissolved in $\mathrm{MeOH}(15 \mathrm{ml})$ as in Method A, and the solution neutralised with AcOH at $0^{\circ} \mathrm{C}$. The mixture was allowed to stand over-

Figure. ORTEP Drawing of the tetrahydroindole (8 bn) showing the atom numbering scheme used, and the centrosymmetric arrangement of a hydrogen-bonded pair of molecules

Table 3. Bond lengths and angles for the tetrahydroindole (8bn), with e.s.d.s in parentheses

Bond lengths (\AA)			
$\mathrm{N}-\mathrm{C}(2)$	1.385(3)	$\mathrm{C}(10)-\mathrm{O}(1)$	1.215(3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.394(3)	$\mathrm{C}(10)-\mathrm{O}(2)$	1.336(3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.414(3)	$\mathrm{O}(2)-\mathrm{C}(11)$	1.458(3)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.503(3)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.493(3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.508(3)	$\mathrm{C}(3)-\mathrm{C}(13)$	1.478(3)
$\mathrm{C}(6)^{-\mathrm{C}}$ (7)	$1.464(4)$	$\mathrm{C}(13)-\mathrm{C}(14)$	1.387(3)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.520(3)$	$\mathrm{C}(14)-\mathrm{C}(15)$	1.387(3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.492(3)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.373(4)
$\mathrm{C}(9)-\mathrm{C}(4)$	1.377(3)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.370(4)
$\mathrm{C}(9)-\mathrm{N}$	$1.355(3)$	$\mathrm{C}(17)-\mathrm{C}(18)$	1.393(3)
$\mathrm{C}(2)-\mathrm{C}(10)$	1.447(3)	$\mathrm{C}(18)-\mathrm{C}(13)$	1.383(3)
Angles (${ }^{\circ}$)			
$\mathrm{C}(9)-\mathrm{N}-\mathrm{C}(2)$	109.4(2)	$\mathrm{C}(8)^{-} \mathrm{C}(9)-\mathrm{N}$	125.3(2)
$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(3)$	107.5(2)	$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{N}$	108.7(2)
$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(10)$	117.9(2)	$\mathrm{C}(2)-\mathrm{C}(10)-\mathrm{O}(1)$	125.0(2)
$\mathrm{C}(10)-\mathrm{C}(2)-\mathrm{C}(3)$	134.4(2)	$\mathrm{C}(2)-\mathrm{C}(10)-\mathrm{O}(2)$	112.9(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	106.8(2)	$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{O}(2)$	122.1(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(13)$	127.9(2)	$\mathrm{C}(10)-\mathrm{O}(2)-\mathrm{C}(11)$	117.5(2)
$\mathrm{C}(13)-\mathrm{C}(3)-\mathrm{C}(4)$	125.2(2)	$\mathrm{O}(2)^{-\mathrm{C}}(11)^{-\mathrm{C}}(12)$	106.6(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	107.6(2)	$\mathrm{C}(3){ }^{-} \mathrm{C}(13)^{-} \mathrm{C}(14)$	121.1(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	130.4(2)	$\mathrm{C}(3)-\mathrm{C}(13)-\mathrm{C}(18)$	120.7(2)
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)$	122.0(2)	$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	118.2(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	111.4(2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.0(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	115.7(2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	119.9(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	115.6(2)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	120.2(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	108.7(2)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	119.9(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(4)$	126.0(2)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	120.9(2)

night at $25^{\circ} \mathrm{C}$, after which water (50 ml) was added and the product extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$. The ether extract was washed with water (50 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated, and the residue purified as for Method A.

Method D. The 1:1 adduct (0.01 mol), prepared as in Method A, was dissolved in liquid $\mathrm{NH}_{3}(50 \mathrm{ml})$ in a thermally insulated flask, dry $\mathrm{NH}_{4} \mathrm{OAc}(0.5 \mathrm{~g}, 0.03 \mathrm{~mol})$ was added, and the mixture was stirred until the NH_{3} had evaporated. The

Table 4. Least-squares mean planes, and displacements (\AA) of atoms from those planes. Equations are in the form $p a x+q b y+$ $r c z=s$; atoms used in the calculation are marked with an asterisk

Plane (1)-Pyrrole ring

p 0.4693	$\mathrm{C}(2)^{*}$	0.01	C(6)	-0.23
$q-0.8737$	C(3)*	-0.01	C(7)	0.37
$r-0.2631$	$\mathrm{C}(4)^{*}$	0.01	C(8)	-0.01
$s \quad 6.870$	$\mathrm{C}(9){ }^{*}$	0.00	$\mathrm{C}(10)$	0.12
	N*	0.00	C(13)	-0.13
	C(5)	0.03	$\mathrm{O}(1)$	0.04
			$\mathrm{O}(2)$	0.35
Plane (2)-H-Bonding site				
p 0.4587	N^{*}	0.00	$\mathrm{C}(2)^{\prime}$	0.00
$q-0.8710$	N^{*}	0.00	$\mathrm{C}(10)$	0.09
$r-0.2704$	$\mathrm{O}(1)^{*}$	0.00	$\mathrm{C}(10)^{\prime}$	-0.09
s 6.962	$\mathrm{O}(1)^{*}$	0.00	$\mathrm{H}(\mathrm{N})$	0.05
	C(2)	-0.00	$\mathrm{H}(\mathrm{N})^{\prime}$	-0.05

Table 5. Bond lengths (\AA) and angles (${ }^{\circ}$) at the hydrogen-bonding site, with e.s.d.s in parentheses

$\mathrm{N}-\mathrm{H}$	$0.92(2)$	$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(1)^{\prime}$	$160(2)$
$\mathrm{H} \cdots \mathrm{O}(1)^{\prime}$	$1.96(2)$	$\mathrm{H} \cdots \mathrm{O}(1)^{\prime}-\mathrm{C}(10)^{\prime}$	$154(1)$
$\mathrm{N} \cdots \mathrm{O}(1)^{\prime}$	$2.847(2)$		

residue was purified by column chromatography, and the product recrystallised.

Method E. As for Method A only the azirine and enamine were separately dissolved in $\mathrm{CHCl}_{3}(25 \mathrm{ml})$ before mixing at $0^{\circ} \mathrm{C}$; the CHCl_{3} was removed prior to $\mathrm{MeOH} / \mathrm{HCl}$ treatment.

Method F. As for Method A, only the MeOH solution was allowed to stand overnight after HCl treatment and before isolation of the product.

Attempts to Prepare 2H-Pyrroles from Azirines (2y) and (2z).-The azirines were unchanged when stirred with the enamines ($1 \mathrm{a}-\mathrm{c}$), and (1 e) both at room temperature and on gentle warming. At $100^{\circ} \mathrm{C}$ tars were formed.

Table 6. Fractional atomic co-ordinates ($\times 10^{4}$) for non-hydrogen atoms with e.s.d.s in parentheses

Atom	x	y	z
N	$2875(2)$	$6330(2)$	10 061(1)
C(2)	2764 (3)	$6708(2)$	8 945(2)
C(3)	4 516(2)	7 594(2)	8780 (2)
C(4)	5 678(2)	7 772(2)	$9839(2)$
C(5)	7 696(3)	8 635(3)	$10177(2)$
C(6)	8 386(3)	8 226(3)	11 282(2)
C(7)	7 226(3)	8 063(3)	12 236(2)
C(8)	5 294(3)	6816 (3)	11 807(2)
C(9)	4 628(3)	6 965(2)	10 595(2)
$\mathrm{C}(10)$	985(3)	6 251(3)	8 271(2)
C(11)	-703(3)	6 564(3)	6 598(2)
C(12)	-273(3)	7 263(3)	5 523(2)
C(13)	$5112(2)$	8 146(3)	7 686(2)
C(14)	4 563(3)	7 054(3)	6 517(2)
C(15)	$5162(3)$	7 564(3)	5496 (2)
C(16)	$6331(3)$	9 166(4)	5 635(2)
C(17)	6 913(3)	10 260(3)	$6782(2)$
C(18)	$6306(3)$	9750 (3)	$7808(2)$
O(1)	-420(2)	5 378(2)	8 526(1)
$\mathrm{O}(2)$	$1021(2)$	6 919(2)	7327 (1)

Attempts to Prepare 3H-Pyrroles from Enamines (11) and (1m).--Reactions were carried out as for Method A. Spectroscopic data for adduct (14) were; $v_{\text {max. }}$ (film) $1685(\mathrm{~s}), 1620(\mathrm{~m})$, 1530 (s), 1395 (s), 1265 (s), and $1105(\mathrm{~s}) \mathrm{cm}^{-1} ; \delta\left({ }^{1} \mathrm{H}\right)$ $\left(\mathrm{CDCl}_{3}\right) 1.10(6 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.75(4 \mathrm{H}, \mathrm{m}), 2.5(1 \mathrm{H}, \mathrm{m})$, $3.10(3 \mathrm{H}, \mathrm{s}), 3.40(4 \mathrm{H}, \mathrm{m}), 7.2(5 \mathrm{H}, \mathrm{s})$, and $7.56(1 \mathrm{H}, \mathrm{d}, J$ $4.5 \mathrm{~Hz}) ; \delta\left({ }^{13} \mathrm{C}\right)\left(\mathrm{CDCl}_{3}\right) 19.5$ (q), 25.5 (t), $34.8(\mathrm{~d}), 50.0(\mathrm{q})$, 52.3 (t), 115.0 (s), 127.9 (d), 128.1 (d), 128.8 (d), 138.7 (s), 151.1 (s), 161.7 (d), and 167.1 (s).

Preparation of the Amino-pyrroles (16) and (17).-Method G. The propynamine (15) and the appropriate azirine were combined as in Method A. After 72 h at $25^{\circ} \mathrm{C}$, the mixture was chromatographed $\left(\mathrm{SiO}_{2} / \mathrm{CHCl}_{3}\right)$, and the isolated product was recrystallised.

Crystal Structure Determination for the Tetrahydroindole (8bn). $-\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}, M=269.34$. Triclinic, space group $P \mathrm{I}$, $a=8.024(1), b=8.973(1), c=11.293$ (2) $\AA, \alpha=103.32(1)$, $\beta=93.34$ (1), $\gamma=110.98(1)^{\circ}, U=729.8 \AA^{3}, Z=2, D_{c}=$ $1.226 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=288, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=0.86 \mathrm{~cm}^{-1}$. Intensity data were collected on a Nicolet R3m automated diffractometer using the $\theta-2 \theta$ scanning technique, with variable scan speeds from 2.02 to $8.37^{\circ} \mathrm{min}^{-1}$ and a scan range from 1° below the $K_{\alpha_{1}}$ peak to 1° above the $K_{\alpha_{2}}$ peak. Background counts were taken for half the scan time at each end of the scan range. All reflections within the ($h, \pm k, \pm l$) quadrants extending to $2 \theta=55^{\circ}$ were measured. A total of 2578 independent reflections were obtained of which 1969 with $\left|F_{\mathrm{o}}\right|>3 \sigma\left(\left|F_{\mathrm{o}}\right|\right)$ were considered to be observed and used in subsequent calculations.

The structure was solved by direct methods with MULTAN $78{ }^{25}$ Refinement was carried out by full-matrix least-squares methods. The quantity minimized was $\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$, with weight $w=1 / \sigma^{2}\left(F_{0}^{2}\right)$. Atomic scattering factors were obtained from International Tables. ${ }^{26}$ Calculations were carried out on an IBM 3031 computer using the CRYM system. ${ }^{27}$

After several cycles of least-squares adjustment of the co-

[^2]ordinates and anisotropic thermal parameters of the nonhydrogen atoms the R-index was reduced to 0.10 . At this stage positions of all the hydrogen atoms were recovered from a difference Fourier map.

In the last least-squares cycle a list of 258 parameters were adjusted: atomic co-ordinates, anisotropic thermal parameters of the non-hydrogen atoms, isotropic thermal parameters of the hydrogen atoms, a scale factor, and a secondary extinction factor. The parameters of the hydrogen atoms were kept in one matrix and the rest of the parameters in another.

The final R-index for 1969 reflections was 0.049 , the ${ }^{\prime}$ goodness of fit ', $\left[\Sigma w\left(F_{0}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} /(m-s)\right]^{1}=2.49$, where m is the number of reflections and s is the number of parameters. The final value of the secondary extinction parameter was $(3.77 \pm 0.08) \times 10^{-7}$. Atomic parameters for non-hydrogen atoms are listed in Table 6. Those for hydrogen atoms (Table 7), observed and calculated structure factors and thermal parameters (Table 8) are in a Supplementary Publication (SUP No. 23723, 9 pages).*

Acknowledgements

We thank Mr. T. P. Tung for taking preliminary X-ray photographs, and the Croucher Foundation for a Research Studentship (for K. W. L.).

References

1 Part 1 is considered to be, A. R. Katritzky, S. Bravo, J. Marquet, and M. P. Sammes, J. Chem. Soc., Perkin Trans. 1, 1983, 2065.
2 For a review of published synthetic routes, see M. P. Sammes and A. R. Katritzky, Adv. Heterocycl. Chem., 1982, 32, 233.

3 N. Gakis, M. Märky, H-J. Hansen, H. Heimgartner, H. Schmid, and W. E. Oberhänsli, Helv. Chim. Acta, 1976, 59, 2149; U. Gerber, H. Heimgartner, H. Schmid, and W. Heinzelmann, ibid., 1977, 60, 687.
4 A. Padwa and P. H. J. Carlsen, J. Am. Chem. Soc., 1977, 99, 1514; A. Padwa and N. Kamigata, ibid., p. 1871.
5 N. Gakis, H. Heimgartner, and H. Schmid, Helv. Chim. Acta, 1974, 57, 1403; W. Stegmann, P. Gilgen, H. Heimgartner, and H. Schmid, ibid., 1976, 59, 1018; U. Widmer, N. Gakis, B. Arnet, H. Heimgartner, and H. Schmid, Chimia, 1976, 30, 453.
6 K. Isomura, M. Okada, and H. Taniguchi, Chem. Lett., 1972, 629.

7 A. Padwa, J. Smolanoff, and A. Tremper, J. Org. Chem., 1976, 41, 543.
8 H. Hemetsberger, I. Spira, and W. Schaenfelder, J. Chem. Res., 1977, (S) 247; (M) 2701.
9 K. Friedrich, G. Boeck, and H. Fritz, Tetrahedron Lett., 1978, 3327.

10 A. Inada, H. Heimgartner, and H. Schmid, Tetrahedron Lett., 1979, 2983.
11 (a) A. Laurent, P. Mison, A. Nafti, and N. Pellissier, Tetrahedron Lett., 1978, 4511; (b) Tetrahedron, 1979, 35, 2285.
12 A. Padwa and Y. Kulkarni, Tetrahedron Lett., 1979, 107.
13 G. L'abbè, P. Van Stappen, and J-P. Dekerk, J. Chem. Soc., Chem. Commun., 1982, 784.
14 A. Laurent, P. Mison, A. Nafti, and N. Pellissier, Tetrahedron Lett., 1979, 3955.
15 See e.g. (a) R. Bonnett, M. B. Hursthouse, and S. Neidle, J. Chem. Soc., Perkin Trans. 2, 1972, 902; (b) ibid., p. 1335.
16 R. B. English, G. McGillivray, and E. Smal, Acta Crystallogr., 1980, B36, 1136.
17 A. Kirfel, Acta Crystallogr., 1975, B31, 2494.
18 A. J. Hubert and H. G. Viehe, J. Chem. Soc. C, 1968, 228.
19 T. Nishiwaki, T. Kitmura, and A. Nakano, Tetrahedron, 1970, 26, 453.
20 F. W. Fowler, A. Hassner, and L. A. Levy, J. Am. Chem. Soc., 1967, 89, 2077; A. Hassner and F. W. Fowler, J. Org. Chem., 1968, 33, 2686.
21 G. L'abbė, J-P. Dekerk, and P. Van Stappen, Bill. Soc. Chim. Belg., 1981, 90, 1073.

22 T. Nishiwaki, T. Saito, S. Onomura, and K. Kondo, J. Chem. Soc. C, 1971, 2644.
23 A. Padwa, J. Smolanoff, and A. Tremper, J. Am. Chem. Soc., 1975, 97, 4682.
24 D. J. Anderson and A. Hassner, Synthesis, 1975, 483.
25 P. Main, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Woolfson, ' MULTAN 78, A System of Computer Programs for the Automatic Solution of Crystal Structures,' Universities of York and Louvain, 1978.

26 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4, p. 72.
27 R. E. Marsh, 'CRYM System of Crystallographic Programs,' California Institute of Technology, 1977.

Received 24th June 1983; Paper 3/1077

[^0]: \dagger The term azolenines refers to non-aromatic isomers of azoles.
 \ddagger The known isomer (9) melts at $107^{\circ} \mathrm{C}$ [L. Bernadi, P. Masi, and G. Rosini, Ann. Chim. (Rome), 1973, 63, 601].
 § During the course of this work, two examples were reported of $1 H$-pyrroles prepared by this method. ${ }^{13}$

[^1]: - Pyrazines, derived apparently from dimerisation and oxidation of azirines, were isolated as by-products in a number of these reactions, and especially those involving the azirine (2 w).

[^2]: * For details of the Supplementary Publications scheme see Instructions for Authors (1984), in J. Chem. Soc., Perkin Trans. I, 1984, Issue 1.

